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Design of Partial Population Experiments

Goal: estimate within-group spillovers

▶ Households in villages

▶ Employees in firms

▶ Students in schools

Two-step design:

▶ Groups randomly divided into treatment “intensities” (saturations)

▶ Units within each group randomly assigned to treatment and control

Compare units across groups with different treatment intensities
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Experimental design: example
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Designing PP Experiments

Key choices:

▶ Number of saturations and within-group probabilities

▶ Probability of each saturation q0, q1, q2, . . . (this talk)

▶ Within-group assignment mechanism (this talk)

Key inputs:

▶ Parameters (outcome variances, intracluster correlations,...)

▶ Variance of estimators (this talk)

▶ Power function to calculate power, MDE (this talk)
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Challenges for Designing PP Experiments

Two-stage design

Multiple treatments

▶ Compare units exposed to different saturations

Within-group correlations (clustering)

Heterogeneity in group sizes

▶ Group sizes tend to vary widely in practice
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Existing tools for designing PP Experiments

Hirano and Hahn (2010), Baird et al (2018)

▶ Homoskedasticity, random effects structure

▶ Ignore group size heterogeneity

Software (e.g. Stata’s power command) makes restrictive
assumptions about group size distribution

▶ Equally-sized groups, NT proportional to NC ,...
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Cruces et al (2022)
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Haushofer and Shapiro (2016, QJE)
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Giné and Mansuri (2018, AEJ Applied)
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Imai et al (2020, JASA)
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Why is group size heterogeneity important?

It affects the variance of estimators

V[β̂] ≈ σ2 [1 + ρ(ICC , n̄,Var(ng ))]

▶ Ignoring Var(ng ) underestimates V[β̂] → overestimates power

It affects inference and power calculations

▶ Normal approx may be inaccurate if groups are “too heterogeneous”

▶ Carter et al (2017), Djogbenou et al (2019), Hansen and Lee (2019)
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Why is group size heterogeneity important?
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This paper

We derive asymptotic variance approximations allowing for:

▶ Multiple treatments

▶ General intracluster correlation and heteroskedasticity

▶ Group size heterogeneity

▶ Varying probabilities across groups

Calculate power and MDEs

Our formulas can be applied in a wide range of designs

▶ Two-stage, PP, clustered, stratified experiments...

We conduct a field experiment on tax compliance in Argentina
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Setup

Random sample of groups g = 1, . . . ,G with units i = 1, . . . , ng

Total sample size n =
∑

g ng

First stage: randomly divide groups into categories:

Tg ∈ {0, 1, 2, . . . ,M}, P[Tg ] = qt

Within each group, assign binary individual-level treatment:

Dig ∈ {0, 1}, Pg [Dig = d |Tg = t] = pg (d , t)
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Setup

Estimands:

βdt = E[Yig |Dig = d ,Tg = t]−E[Yig |Tg = 0]

▶ Direct effects = β1t

▶ Spillover effects = β0t

Second moments:

σ2
dt = V[Yig |Dig = d ,Tg = t]

ρdt = cor(Yig ,Yjg |Dig = d ,Djg = d ,Tg = t)
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Setup

Estimation strategy:

Yig = α+
M∑
t=1

β0t(1− Dig )1(Tg = t) +
M∑
t=1

β1tDig1(Tg = t) + εig

Equivalent to:
β̂dt = Ȳdt − Ȳ00

Allow for correlated errors within groups
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Main Result

Asymptotic Approximation

Under regularity conditions, if

max
g≤G

n2g
n

→ 0,

∑G
g=1 n

4
g

n2
≤ C < ∞,

then:
β̂dt

a∼ N (βdt ,Vdt)

where:

Vdt =
σ2
dt

qt
∑

g ngpg (d , t)

{
1 + ρdt

∑
g ng (ng − 1)Pg [Dig = d ,Djg = d |Tg = t]∑

g ngpg (d , t)

}

+
σ2
00

q0n

{
1 + ρ00

(∑
g n

2
g

n
− 1

)}
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Main result: intuition

Variance: V[β̂dt ] = V[Ȳdt ] + V[Ȳ00] allowing for:

▶ Heteroskedasticity: σ2
dt ̸= σ2

d′t′

▶ Intracluster correlation: ρdt ̸= 0

▶ Unequal probabilities between groups: pg (d , t) ̸= pg ′(d , t)

▶ Group size heterogeneity: Var(ng ) ̸= 0
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Main Result: Intuition

Condition:

max
g≤G

n2g
n

→ 0

restricts the relative size of the largest group

▶ Ensures that no group “dominates” the sample

Condition: ∑G
g=1 n

4
g

n2
≤ C < ∞

bounds the fourth moment of the distribution

▶ Rules out fat tails (outliers)
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Power and MDE calculations

Based on the normal approximation, the power function is

Γ(βdt) ≈ 1− Φ

(
βdt√
Vdt

+ z1−α/2

)
+Φ

(
βdt√
Vdt

− z1−α/2

)
Depends on:

▶ Treatment effect βdt

▶ Group sizes {ng}Gg=1 and total sample size n

▶ Assig mech: {qt}t , {pg (d , t)}t,g , {Pg [Dig = d ,Djg = d |Tg = t]}t,g

▶ Outcome moments {σ2
dt , ρdt}t
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Choice of {qt}t

Optimal choice requires defining an optimality criterion

▶ How to combine variances of multiple estimators

Optimal design literature has proposed several alternatives

We discuss two scenarios:

▶ Unconstrained designs: minimize the average of all estimator
variances (A-optimality)

▶ Constrained designs
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Choice of {qt}t : unconstrained optimization

A-optimal design

The solution to the optimal design problem:

min
q0,q1,...,qM

M∑
t=1

{
V[β̂0t ] + V[β̂1t ]

}
, qt > 0,

M∑
t=0

qt = 1

is:

q∗0 =

√
2MB0√

2MB0 +
∑
t>0

√
Bt

, q∗t =

√
Bt√

2MB0 +
∑
t>0

√
Bt

, t > 0,

where {Bt}t are constants depending on {ng}g , {pg (d , t)}d,t,g and
{Pg [Dig = d ,Djg = d |Tg = t]}t,g , {σ2

dt , ρdt}t
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Choice of {qt}t : incorporating constraints

Researchers may need to incorporate constraints in choice of qt

▶ Logistical, administrative, etc

We provide an example in our field experiment

▶ “Minimax-like” approach with fixed number of treated
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Within-group treatment assignment

We want to assign exactly ngpt units to treatment

But ngpt may not be an integer (e.g. pt = 0.5, ng = 11)

Let ξg ∈ {0, 1} be a random adjustment factor and let

N1
g = ⌊ngpt⌋+ ξg1(ngpt /∈ N)

be the (random) number of treated in group g with Tg = t

Setting Pg [ξg = 1|Tg = t] = (ngpt − ⌊ngpt⌋)1(ngpt /∈ N) gives:

E[N1
g |Tg = t] = ngpt , Pg [Dig = 1|Tg = t] = pt
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Direct and spillover effects in tax compliance

We teamed up with a large municipality in Greater Buenos Aires

Neighbors are required to pay a monthly bill on their real estate

Information campaign with personalized letters

▶ One-page letter informing of new electronic billing option

▶ Instructions on how to sign up and pay online

▶ Information on current billing period and past due debt

Are there spillovers between neighbors from the same block?
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Example of the intervention letter

Cuota 10 vencimiento  10 de octubre 2020:
Deuda año en curso*:
Deuda años anteriores*: 

ID:

LOCALIDAD:

* Al 15/09/2020

CAP. MADARIAGA   N° 

1657

XXXXXX/7

11 de Septiembre

XXXXX

XXXXX/7

347,29

1.702,58

289,54
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PP Experiment: Design

We randomly divide blocks into four categories:

▶ Tg = 0: pure controls with prob q0

▶ Tg = 1: 20% treated with prob q1

▶ Tg = 2: 50% treated with prob q2

▶ Tg = 3: 80% treated with prob q3

We set up a system of eqs to incorporate constraints on {qt}t
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Constrained choice of {qt}t

Choose q1, q2, q3, with q0 = 1− q1 − q2 − q3

The total number of letters sent (L) should equal the expected
number of treated:

L = n(0.2q1 + 0.5q2 + 0.8q3)

Categories Tg = 1 and Tg = 3 are symmetric, so q1 = q3

This leaves two probabilities to be determined: q2 and q3

Idea: balance variances across assignments
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Constrained choice of {qt}t

The “hardest” effects (smallest cells) to estimate are β03 and β11

▶ Spillover effect in 80% groups and direct effect in 20% groups

We choose q2 and q3 by setting:

V[β̂03] = V[β̂02]

based on our variance approximation

We assume σ2 = 0.25 (upper bound for binary outcomes) and
ρ ≈ 0.1 (based on baseline data)
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Sample sizes

Blocks Control Obs Treated Obs

Tg = 0 1, 102 19, 105 0
Tg = 1 1, 100 15, 049 3, 864
Tg = 2 680 5, 898 5, 904
Tg = 3 1, 100 3, 707 15, 281
Total 3, 982 43, 759 25, 049

MDEs range from 2.6 to 3.3 p.p.
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Treated groups: Payment rate (Oct’20 bill)

Figure: Payment rates in levels

Intervention
begins

Due date of
October 2020
billing period

Treated groups

Pure Control

0

10

20

30

40

C
um

ul
at

iv
e 

pa
ym

en
t r

at
e 

(%
)

25sep2020 02oct2020 09oct2020 16oct2020 23oct2020 30oct2020
Calendar date

35 / 42



Treated groups: Payment rate (Oct’20 bill)

Figure: Difference relative to pure control group
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Untreated groups: Payment rate (Oct’20 bill)

Figure: Payment rates in levels
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Untreated groups: Payment rate (Oct’20 bill)

Figure: Difference relative to pure control group
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Diff treated/pure controls (Oct’20 bill)
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Diff. untreated/pure controls (Oct’20 bill)
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Summary

Framework to calculate power and MDE in PP experiments

▶ Allow for group size heterogeneity, heteroskedasticity, ICC,...

▶ Derive optimal choice of group-level probabilities

Application to tax compliance in Argentina

▶ Strong and significant direct effects of the letters

▶ No clear evidence of reinforcement effects between treated

▶ Some evidence of within-neighbor spillovers in highest saturation
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Thank you!

42 / 42


